

Partly in response to a watershed management initiative, conservation tillage increased in the 1990s.

Monitoring program

- Stage is recorded at 10-minute intervals
- Pumping sampler takes samples at 8-hour intervals.
- Samples are analyzed for NH₄, NO₃, Soluble reactive phosphorus (SRP), and suspended sediment (SS)
- All samples collected during storm flow events are analyzed, providing high-resolution record of storm flow concentrations
- At times of base flow typically 3-7 samples per week are analyzed.
- Generally about 300 samples per year are analyzed (no samples at times of zero flow).

Measured concentrations at Four Mile Creek

- Data are noisy; concentrations typically vary through 3-4 orders of magnitude.
- Seasonal and longerterm trends are suggested by LOWESS pots

Flow-proportionate interpolation

We interpolate hourly concentrations of NH4, NO3, SRP, and SS in order to calculate monthly flow-weighted mean concentrations for trend analysis.

NH₄, SRP, and SS all display strong effects of flow on concentration. For these parameters, flow-proportionate interpolation is used to estimate concentrations between measured points.

Flow-proportionate interpolation

The intercept of the log concentration-log Q relation is calculated for each measured point, using the slope of the global log C-log Q relationship.

Intercepts are linearly interpolated between measured points, and concentrations estimated based on the global slope.

Simple interpolation is used for NO₃, which does not exhibit consistent variations with Q.

The method estimates effects of flow variations on unmeasured concentrations.

Analyses of data for 1994-2206 indicated strong downward trends in flow-adjusted NH₄, SRP, and SS for some streams, but little change in NO₃.

The trends are consistent with observed changes in farm operations:

- Increased use of conservation tillage
- More intensive nutrient management
- Indoor hog feeding operations and more intensive manure management

Parameter	P-value	Change in
		concentration
		%/year
NH ₄	<.0001	-8.08
NO ₃	0.7756	-0.63
SRP	0.0118	-4.21
SS	<.0001	-6.44
NH ₄	0.0027	-8.86
NO ₃	0.3344	-2.19
SRP	0.1870	-6.46
SS	0.0071	-8.12
NH ₄	0.0117	-7.91
NO ₃	0.0001	-11.57
SRP	<.0001	-12.31
SS	0.9127	-0.32
	NH ₄ NO ₃ SRP SS NH ₄ NO ₃ SRP SS NH ₄ NO ₃ SRP SS NH ₄ NO ₃	NH4 <.0001

Decision-tree/change point analyses can identify changes in trends within the record.

Graphs at right show residuals in the mean monthly log concentration—log flow relationship.

We used decision tree/ change point analyses to identify locations in the record where the relation between flow and concentration changes significantly.

The strong decline in NH4 observed in 1994-2006 data appears to have ceased or reversed.

NO3, which declined only slightly or was unchanged in 1994-2006, may be beginning to decline significantly.

The decline in SRP observed in the 1994-2006 data appears to have ended.

The decline in SS observed in the 1994-2006 data has disappeared.

Summary/conclusions

- High-resolution, flow-dependent sampling programs allow detection of subtle changes in water quality.
- Improved farm management practices appear to have had a significant positive impact on water quality, especially in the 1990s.
- Declines in concentrations of NH₄, SRP, and SS observed for 1994-2006 appear to have ceased, while NO₃ has declined more recently.
- Improvements in water quality in the 1990s may be overshadowed by other trends, such as P-saturation in soils and increased stream channel erosion.

Thanks!

- Mike Hughes, Miami University
- National Science Foundation
- US Department of Agriculture
- Preble Soil & Water Conservation District
- Miami Resource Conservation and Development Council
- Miami University
- Many dedicated students